homotopy axiom - определение. Что такое homotopy axiom
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое homotopy axiom - определение

PROPERTIES THAT HOMOLOGY THEORIES OF TOPOLOGICAL SPACES HAVE IN COMMON
Dimension axiom; Steenrod-Eilenberg Axioms; Steenrod-Eilenberg axioms; Eilenberg-Steenrod axioms; Homotopy axiom

Eilenberg–Steenrod axioms         
In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.
Axiom schema         
A FORMULA IN THE METALANGUAGE OF AN AXIOMATIC SYSTEM IN WHICH ONE OR MORE SCHEMATIC VARIABLES APPEAR
Axiom scheme; Axiom schemata; Axiom-scheme; Finite axiomatization
In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom.
Homotopy lifting property         
  • center
IN ALGEBRAIC TOPOLOGY
Covering homotopy; Covering homotopy axiom
In mathematics, in particular in homotopy theory within algebraic topology, the homotopy lifting property (also known as an instance of the right lifting property or the covering homotopy axiom) is a technical condition on a continuous function from a topological space E to another one, B. It is designed to support the picture of E "above" B by allowing a homotopy taking place in B to be moved "upstairs" to E.

Википедия

Eilenberg–Steenrod axioms

In mathematics, specifically in algebraic topology, the Eilenberg–Steenrod axioms are properties that homology theories of topological spaces have in common. The quintessential example of a homology theory satisfying the axioms is singular homology, developed by Samuel Eilenberg and Norman Steenrod.

One can define a homology theory as a sequence of functors satisfying the Eilenberg–Steenrod axioms. The axiomatic approach, which was developed in 1945, allows one to prove results, such as the Mayer–Vietoris sequence, that are common to all homology theories satisfying the axioms.

If one omits the dimension axiom (described below), then the remaining axioms define what is called an extraordinary homology theory. Extraordinary cohomology theories first arose in K-theory and cobordism.